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Abstract— This paper presents a new method for seamless
fusion of arbitrary range sensors for mobile robot obstacle
avoidance. This method, named Virtual Range Scan (VRS),
is able to deal with arbitrary sensor configurations (2D and
3D) and it is independent of the underlying obstacle avoidance
strategy. This makes it a very flexible approach that can
reuse existing 2D obstacle avoidance algorithms for 3D obstacle
avoidance. Additionally the VRS is able to keep obstacles in
memory in order to incorporate them even if they are no
longer visible in the current real sensor data. To combine this
memory effect with the presence of dynamic objects in the
robot surroundings, a motion tracker is used. We demonstrate
the ability of the VRS to realize 3D obstacle avoidance using
two different sensor configurations for taking 3D range data
and classical two dimensional obstacle avoidance methods.

I. I NTRODUCTION

Obstacle avoidance is one of the key requirements an
autonomous mobile robot has to fulfill. Especially in a
working environment shared by humans and robots, secure
obstacle avoidance is an absolute precondition to ensure
the humans’ safety. In mobile robotics, obstacle avoidance
is realized as reactive adaptation of the robot’s motion
commands with respect to sensor information about its
surroundings. In contrast to path planning, which ensures
the global collision-free navigation to a given goal, obstacle
avoidance is a local problem and does not require a global
representation of the environment. Strategies and sensors
for achieving collision-free navigation exist in considerable
variety. In this paper we address the problem that most of
these strategies and corresponding sensor configurations only
consider two dimensions [9], which is insufficient in real,
cluttered, dynamic working environments. A precondition for
safe navigation in a three dimensional environment is that the
sensor configuration is able to detect obstacles all over the
robot’s bounding box.

This paper presents a method for fusing range data, which
may regard 3D information, and handling them by means of
available 2D tools. In consequence, 3D obstacle avoidance
is achieved in a compuationally cheap way that integrates
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standard 2D appoaches in a uniform way. The method is
demonstrated for two different sensor configurations that
include components for taking 3D data.

The next section points to related work concerning 3D
obstacle avoidance. Section III describes our approach for
fusing range senors. Section IV gives several experiments
showing the ability of the VRS concept to enable 3D
obstacle avoidance using 2D avoidance strategies. The paper
concludes in section V with an outlook on future work.

II. RELATED WORK

There are two different approaches to achieve three di-
mensional obstacle avoidance. The first approach considers
the whole three dimensional space and computes optimal
motion commands in all six degrees of freedom [12]. Hence
these algorithms are suited for autonomous flying robots
or underwater robots. The drawback of these algorithms is
that they suffer from high computational complexity. Since
wheeled mobile robot motion is often restricted to a two
dimensional plane, the second approach maps the three
dimensional sensor data onto a two dimensional data set. In
[3] a permanently tilting laser scanner is used to be aware of
the 3D workspace in front of the robot. The points obtained
by the scanner are stored in a robot-centric representation
equivalent to that of an ordinary 2D laser scan. This data
set includes the relevant information for obstacle avoidance
algorithms.

In [13] a permanently rotating laser scanner is used. The
scanners orientation result in a vertical 2D scan and the
rotation around the upright axis produce a360

◦ field of view.
For obstacle avoidance the nearest point of each 2D scan
is integrated into a virtual scan which is used for obstacle
avoidance. The main drawback of this approach and the
approach presented in [3] is, that the methods only work with
a special sensor configuration. Additionally the used sensor
configuration of a tilting or rotating laser scanner does not
provide a permanent obstacle avoidance in 3D. In contrast the
VRS concept presented in this paper can deal with arbitrary
sensor configurations, has an obstacle memory and is aware
of dynamic objects in the robot surrounding.

Stanley, the robot that won the DARPA Grand Challenge
uses 5 laser scanners mounted on the roof of the robot, tilted
downward to scan the road [10]. They overlay the 3D point



cloud obtained by the laser scanners while driving with a
2D grid map. Using a probabilistic method that tests for
sudden changes in the height coordinate for all 3D points
within a cell of the grid map, the cell is marked as free
or occupied. Afterwards, navigable space is identified by
fitting a quadrilateral ahead of the robot in the 2D grid map.
Dynamic objects are ignored since the system was developed
for a desert environment.

Beside sensor configurations using laser scanners, two
camera based methods are widely-used. The first one uses a
single camera to detect obstacles in 3D using the optical flow
[2]. The second technique triangulates two cameras to get the
3D information of the environment. In [7] this stereo vision
technique is combined with horizontally mounted 2D laser
scanners to achieve collision-free navigation. The drawback
of these methods is a relatively high computational load.
Moreover they tend to fail if obstacles are insufficiently
textured.

III. T HE V IRTUAL RANGE SCAN CONCEPT

The virtual range scan (VRS) combines sensor data from
arbitrary range sensors into a virtual two dimensional data
set. The reason to do this is, that projecting available 3D
information in a 2D frame allows us to use simple, efficient,
and widespread tools for robot control (player [11], in our
case, see below), yet react correctly to avoid obstacles in 3D,
based on the recent sensor data.

Using the robot center point as the common point of refer-
ence, each range value can be transformed to a point in three
dimensional space. These 3D points can be integrated into
the VRS in two ways: direct and memory based integration.
For both forms of integration, the two dimensional horizontal
plane is subdivided into polar segments with a robot centered
origin. We are using an angular resolution of one degree. A
3D point is integrated into the VRS by projection onto the
polar plane. The range value for each polar segment is the
minimum distance from the origin to the points that were
projected into this segment. The direct integration is used
with horizontally mounted range sensors.

Memory based integration keeps the 3D points in memory.
This is required since obstacles may disappear from sensor
view; for example, in the sensor configuration used here,
static 3D objects will disappear from sight of the tilted
scanners, as the robot moves along. To achieve the memory
effect, the 3D points are projected onto a grid map with
respect to the current robot pose obtained by Monte Carlo
Localization. This transforms the generation of the VRS
from a local to a global coordinate problem. The localization
uncertainty has to be taken into account in the process, as
discussed later.

Fig. 1 shows how the grid map is integrated into the
generation of the VRS. There are two laser scanners (red
and grey beams) that are directly integrated into the VRS.
Additionally, the polar segments (blue) are shown. The
obstacle grid map is combined with the direct integrated
points through a ray tracing in the grid map based on the
current robot pose (magenta beams). In order to accelerate

Fig. 1. VRS with grid map as obstacle memory: The robot (lightgrey)
is standing in front of a door (bold black lines are walls). Using ray
tracing (magenta) in the obstacle grid map (gray squares) determines if
the remembered obstacle has a shorter distance to the robot than all direct
integrated sensors (red and grey). If this is the case, the range (green) for the
segment (blue) is adapted to the ray tracing distance. In order to accelerate
the ray tracing procedure, a maximum distance is defined (magenta circle).
See text for additional explanation.

Fig. 2. Takes of the VRS data in the same scene. Left: VRS by direct
integration taking only the most recent input of two horizontally mounted
laser scanners as input. Right: VRS of the same scene after integration of
the local obstacle map (black), resulting from memory basedintegration of
non horizontally mounted range sensors and prior robot motion in the scene.

the ray tracing procedure, a maximum distance of obstacles
that are integrated into the VRS is defined (magenta circle).
If the distance obtained by the ray tracing procedure for a
polar segment is shorter than the minimum distance of all
direct integrated points, the polar segment’s range value is
set to ray tracing distance.

Fig. 2 (left) shows the VRS data using two direct in-
tegrated horizontally mounted laser scanners with a270

◦

field of view as input (cf. Fig. 1 red and grey). Since this
VRS reflects the environmental boundaries, it is suitable for
mobile robot localization. The right part shows the VRS after
integration of the obstacle map generated by non horizontally
mounted laser scanners. Since this VRS is aware of table tops
and seat bases, it is suitable for 3D obstacle avoidance.



A. Filtering the Data

Due to sensor and localization noise mentioned above,
filters have to be used when integrating the 3D points into the
obstacle grid map. Wrongly inserted points would cause the
robot to hallucinate obstacles. In consequence, the following
filters are used:

1) 3D points are omitted from integration into the obstacle
grid map, if there are any directly integrated points
closer to the robot for the respective polar segment.

2) 3D points higher than the robot’s maximal height are
omitted.

3) 3D points are omitted, if their distance to the robot is
above a defined threshold.

The first filter is safe since there is no use for keeping
in memory an obstacle that is already visible in the direct
integrated sensors. The second filter make sense, since ob-
jects above robot height cannot cause harm. The third filter
reduces the influence of any localization orientation errorand
is safe because of the obstacle’s distance.

Among the issue of wrongly inserted 3D points, the
handling of dynamic objects in the robot’s environment is
a crucial part of the VRS. For example, a human walking
around the robot would cause obstacles to be detected
incorrectly all around the robot; the experiment that teststhe
different filters in the following section, shows the effect.
These points cannot be filtered out by simple geometric
filters. The problem can only be solved by discriminating
between static and dynamic obstacles in the robot’s surround-
ings. Dynamic objects are detected by observing sudden
changes in the directly integrated range sensors. The dynamic
objects are tracked by a Kalman filter based motion tracker.
Each moving object has an uncertainty ellipse representing
the probability that a dynamic object is at this position.
In order to omit all 3D points caused by dynamic objects
from integration into the obstacle grid map, the points are
projected onto the polar plane. If the projected points lie
within a dynamic object’s uncertainty ellipse, the point is
omitted. In our implementation, we have used the motion
tracker provided in the “cure” framework [8]. The motion
tracker also successfully takes the ego motion of the robot
into account and compensates it. The motion filter together
with the other three filters achieve that only 3D points
caused by static obstacles that are not visible in the directly
integrated sensors, like table tops or shelves, are integrated
in the grid map.

Additionally to all filters, an aging process is applied on
the grid map to ensure that wrongly inserted obstacles do not
block the robot forever. This aging process only continues if
the robot moves; otherwise the robot could “forget” obstacles
during a longer stop, like a manipulation task near a table.
During the manipulation, the table edge is not visible in the
sensor data. After the manipulation phase, the robot would
collide with the table edge because the VRS and thus the
obstacle avoidance algorithm would be unaware of it. In
our implementation the threshold is 25 seconds of robot
movement before it forgets an obstacle.

Fig. 3. Left: Schematic top view showing the laser scanner configuration.
Right: Simulated LiSA robot with rendered laser scanner beams. The SICK
laser scanners (blue beams) form a horizontal plane, the Hokuyo laser
scanner planes (green beams) a funnel around the robot.

IV. EXPERIMENTS

In this section we test the VRS concept with different
2D and 3D sensor configurations. One plattform we used
is the LiSA robot (Fig.5, left). It is equipped with six laser
scanners. Two SICK s300 scanners are mounted horizontally
on opposite corners of the robot. Since both scanners have
a field of view of 270

◦, their combination provides a360
◦

field of view in a horizontal plane (see Fig. 3 blue rays).
Since two dimensional sensor information is insufficient for
collision free navigation in 3D, the sensor configuration is
extended by four Hokuyo laser scanners. They are mounted
just above base plane height and pointing upward at an angle
so that all four laser scanners form a funnel around the robot
(see Fig. 3, green rays).

A. Testing the point filters

The results of the 3D point filters for the local obstacle
map are shown in Fig. 4. The red dots are the 3D points that
are classified as obstacles and integrated into the obstacle
map while the LiSA robot does a360

◦ turn and a human
walks around the robot. In the left figure, all 3D points
are integrated into the obstacle grid map. This leads to
various incorrect inserted points and the robot is effectively



Fig. 4. 3D points integrated in the obstacle grid subject to the used filters. Left: No filter is applied on the 3D points. Obviously, the localization suffers
from an orientation error here. Middle: Filters 1 and 2 are applied on the 3D points. Right: 3D points belonging to dynamicobjects are deleted.

blocked. The middle figure shows the remaining 3D points
after filters 1 and 2 are applied. It is obvious that many
previously inserted points are removed. However the robot
is still blocked due to the 3D points caused by the human
walking around the robot. Fig. 4(right) shows the result of
the additionally applied dynamic object filter that uses the
kalman motion tracker. In fact, all removed points were
caused by the human walking by.

B. Testing the VRS for enabling 3D obstacle avoidance

The ability of the VRS to enable 3D obstacle avoidance is
tested using the LiSA robot’s 3D sensor configuration and a
3D camera based sensor configuration in combination with
the two dimensional obstacle avoidance algorithms Vector
Field Histogram (VFH [1]) and the Nearness Diagram (ND
[6]) provided by the player framework [11]. Fig. 5 (left)
shows a scene of the robot run. The crucial part of the
parcours for all obstacle avoidance algorithms based on 2D
data is the configuration of two chairs standing back-to-
back. The distance between the chair legs appears to offer
enough space for the LiSA robot to pass through, so the path
through the chairs is identified as navigable by 2D sensor
configurations. Fig. 5 (right) shows this experiment. The ND
algorithm is used with a VRS, supplied solely with the 2D
SICK scanner data. As expected, the VRS only contains the
chair legs and no seat bases. The ND method identifies the
area as navigable, and the robot physically collides with the
chairs.

In the second experiment, the VRS uses the data from
all six laser scanners as input. Fig. 6 shows the VRS and
the robot path through the parcours resulting from the ND
obstacle avoidance generated motion commands. The 3D
information allows the chairs to be detected in the VRS. The
ND algorithm identifies the chair region as not navigable and
steers the robot round the chairs.

C. Integrating a 3D Camera into the Virtual Range Scan

This section demonstrates that other range sensors can
be integrated seamlessly into the obstacle avoidance process
with the VRS concept. In addition to the previously described
sensor configuration, a time-of-flight PMD camera is used
[5]. This sensor uses an array of laser diodes to assign a
range value to each pixel. Using the camera pose and intrinsic

Fig. 7. Left: Unfiltered point cloud obtained during a360
◦ turn in an office

environment. Right: Filtered point cloud. Sensor errors from reflection and
range steps are removed.

parameters, each pixel represents a point in 3D space. Since
the PMD camera does not provide RGB-color information,
a normal camera is used together with it to assign a color
value to each 3D point. Using colored points offers more
robust sensor error filtering. Fig. 7 shows colored 3D points
obtained by the sensor during a360

◦ turn in an office
environment. Apparently, the sensor is able to map the 3D
structure of the office environment. However, there are many
sensor errors due to reflection on windows or so called flying
pixels at range steps, which arise from integration errors in
the sensor(left). These sensor errors have to be filtered out
before the PMD data is integrated into the VRS. We have



Fig. 5. Left: Experimental setup that requires 3D environment awareness to identify the region below the chair seats as not navigable. Middle and Right:
The VRS using only the two SICK laser scanner is not aware of the chair seats. The ND obstacle avoidance algorithm identifies the chair region as
navigable and the robot collides with the chairs.

Fig. 6. The VRS integrates the information of all six laser scanners. Accordingly, the obstacle grid map contains the chair seats. The VRS marks the
chair region as blocked and the ND algorithm navigates the robot around the chairs.

used the filtering method described by Huhle et al. [4]. It
is a clustering algorithm in the spatial and color space that
detects isolated points. Fig. 7 (right) shows the PMD camera
data with isolated points removed. The filter removes nearly
all sensor errors; note that it also removes a number of true
positive data points. Since the only precondition of the VRS
is, that an integrated sensor is able to map its sensor data
onto 3D points, this sensor can be seamlessly integrated.
Fig 8 presents the results of an experiment using a VRS
combining a SICK laser scanner and the PMD camera.

The sensors are mounted on a smaller robot to clarify that
the VRS concept is not restricted to the LiSA robot’s sensor
configuration. The left figure shows the experimental setup.
The robot has to drive around two wastebins, which are not
visible in the laser scanner data. The middle figure shows,
that the VRS (blue) is aware of the obstacles due to the
PMD camera’s sensor data (red points) and the ND obstacle
avoidance navigates the robot around the wastebins (right).

Space does not permit to present more experiments. The
VRS has proven to perform robustly as expected. Some video

material about additional experiments is available atwww.

informatik.uos.de/kbs/lisa_downloads.html

D. Integrating Restricted Zones into the Virtual Range Scan

The VRS makes it easy to integrate restricted zones for the
robot. A restricted zone can be for example the area around
a staircase heading down or other obstacles that can not be
safely identified in the sensor data. The standard way to solve
this problem is to use a high level path planner that takes the
restricted zones into account in the global path. Using the
VRS, there is an alternative. The restricted zone is directly
integrated into the obstacle grid map. In consequence, the
restricted zone is integrated together with the sensor datain
the VRS. Hence the restricted zones look like real obstacles
for a classical two dimensional obstacle avoidance algorithm.
Fig. 9 presents the result of an experiment with a robot using
a VRS with a forward directed SICK scanner and a backward
directed Hokuyo scanner as input (top). The bottom figure
shows, that the VRS is aware of the restricted zones and the
robot navigates around them.



Fig. 8. Left: Experimental setup Middle: The VRS (blue) is aware of the obstacles due to the PMD camera (red points). Right: The robot navigates
around the wastebins.

Fig. 9. Top: Mobile robot equipped with forward directed SICK and
backward directed Hokuyo scanner. Bottom: The VRS (blue) isaware of the
restricted zones (magenta) and the robot navigates round them (red path).

V. CONCLUSION AND FUTURE WORK

This paper has presented the VRS concept. It combines
range sensors in arbitrary configurations with classical two
dimensional obstacle avoidance tools. Using two different
3D range sensor configurations as demonstrating examples,
the VRS enables the robot to navigate in cluttered, dynamic
environments. Future work will involve additional ranging
sensors, like stereo cameras, sonars, and tilting / rotating
laser scanners.
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