Virtual Range Scan for Avoiding 3D Obstacles Using 2D Tools
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Abstract— This paper presents a new method for seamless standard 2D appoaches in a uniform way. The method is
fusion of arbitrary range sensors for mobile robot obstacle demonstrated for two different sensor configurations that
avoidance. This method, named Virtual Range Scan (VRS), include components for taking 3D data.

is able to deal with arbitrary sensor configurations (2D and . . .

3D) and it is independent of the underlying obstacle avoidace The next s_ectlon pomt_s to related _Work concerning 3D
strategy. This makes it a very flexible approach that can Obstacle avoidance. Section Il describes our approach for
reuse existing 2D obstacle avoidance algorithms for 3D okmtle  fusing range senors. Section IV gives several experiments
avoidance. Additionally the VRS is able to keep obstacles in showing the ability of the VRS concept to enable 3D
memory in order to incorporate them even if they are N0 gphetacle avoidance using 2D avoidance strategies. The pape

longer visible in the current real sensor data. To combine tis ludes i tion V with tlook fut K
memory effect with the presence of dynamic objects in the concludes in section V- with an outiook on future work.

robot surroundings, a motion tracker is used. We demonstrag Il R W
the ability of the VRS to realize 3D obstacle avoidance using - RELATED WORK

two different sensor configurations for taking 3D range data There are two different approaches to achieve three di-
and classical two dimensional obstacle avoidance methods. mensional obstacle avoidance. The first approach considers
l. INTRODUCTION the .Whole three dimensiqnal space and computes optimal

. . . motion commands in all six degrees of freedom [12]. Hence

Obstacle av0|da_1nce is one of the key requirements gpeqe algorithms are suited for autonomous flying robots
autonomous mobile robot has to fulfill. Especially in ay. ngerwater robots. The drawback of these algorithms is

working environment shared by humans and robots, SECUiGat they suffer from high computational complexity. Since

) lized . d . ¢ th bot’ . , the second approach maps the three
IS rea 'zz as hreact|ve adaptation o ft e ro OtSbmom?ﬂimensional sensor data onto a two dimensional data set. In
commands with respect to sensor information about | ] a permanently tilting laser scanner is used to be aware of

surroundlngs._ln contrast t(_) path plannl_ng, which ensur fie 3D workspace in front of the robot. The points obtained
the global collision-free navigation to a given goal, obiga the scanner are stored in a robot-centric representation

avoidance is a local problem and does not require a glob, uivalent to that of an ordinary 2D laser scan. This data

representation of the environment. Strategies and SENSQLt includes the relevant information for obstacle avosgan
for achieving collision-free navigation exist in considble a#gorithms

variety. In this paper we address the problem that most o In [13] a permanently rotating laser scanner is used. The

these_z strategies and c_orrespondm_g sensor conﬂgura_umy S Oscanners orientation result in a vertical 2D scan and the
consider two dimensions [9], which is insufficient in real

I d.d . ki . A dition f rotation around the upright axis produc8a® field of view.
cufttere » dynamic Wgr mglenqunmelnts._ preconc 't't(h); For obstacle avoidance the nearest point of each 2D scan
safe navigation in a three dimensional environment s it t ; integrated into a virtual scan which is used for obstacle

sensor configuration is able to detect obstacles all over ﬂé@/oidance The main drawback of this approach and the

ml_)r%t.’s bounding box. hod for fusi q hi proach presented in [3] is, that the methods only work with
IS par;er pr_esfents a met Od hor (;Jlgng r:angg ata, w Igﬁlspecial sensor configuration. Additionally the used senso
may regard 3D information, and handling them by means onfiguration of a tilting or rotating laser scanner does not

?‘Va"ak_"e 2D, tools. In consequence, 3D obstacle _av0|dan Fovide a permanent obstacle avoidance in 3D. In contrast th
is achieved in a compuationally cheap way that integrat

S concept presented in this paper can deal with arbitrary
*Financial support for this research and development ptojgSA is sensor cqnflgqratlons, has an obstacle memory and is aware

provided by the German Federal Ministry for Education andseRech 0Of dynamic objects in the robot surrounding.

(BMBF) as part of the framework program "Forschung fur diedruktion Stanley, the robot that won the DARPA Grand Challenge

von Morgen” (Research for tomorrow’s production; grants @2PB2170- 5| d h fofth b ilted

02PB2177). Its administration is handled by the Project ag@ment uses S laser scanners mounted on the roof of the robot, tilte

Agency Forschungszentrum Karlsruhe (PTKAPFT). downward to scan the road [10]. They overlay the 3D point



cloud obtained by the laser scanners while driving with a
2D grid map. Using a probabilistic method that tests for
sudden changes in the height coordinate for all 3D points
within a cell of the grid map, the cell is marked as free
or occupied. Afterwards, navigable space is identified by
fitting a quadrilateral ahead of the robot in the 2D grid map.
Dynamic objects are ignored since the system was developed
for a desert environment.

Beside sensor configurations using laser scanners, two
camera based methods are widely-used. The first one uses g
single camera to detect obstacles in 3D using the optical flow
[2]. The second technique triangulates two cameras to get th
3D information of the environment. In [7] this stereo vision
technique is combined with horizontally mounted 2D laser
scanners to achieve collision-free navigation. The drakba
of these methods is a relatively high computational load.
Moreover they tend to fail if obstacles are insufficiently am .|/
textured. ] \ N

N

lIl. THE VIRTUAL RANGE SCAN CONCEPT Fig. 1. VRS with grid map as obstacle memory: The robot (ligtey)

The virtual range scan (VRS) combines sensor data frofn standing in front of a door (bold black lines are walls).ings ray
racing (magenta) in the obstacle grid map (gray square®rrdies if

arbitrary range sensors into a virtual two dimensional da§fe remembered obstacle has a shorter distance to the tatoiatl direct

set. The reason to do this is, that projecting available 3Dtegrated sensors (red and grey). If this is the case, tigerégreen) for the

information in a 2D frame allows us to use simple, ef'ficient;?‘r‘f‘-l’me”t (blue) is adapted to the ray tracing distance. lerdodaccelerate
. . e ray tracing procedure, a maximum distance is defined ntagircle).

and widespread tools for robot control (player [11], in OUlsee text for additional explanation.

case, see below), yet react correctly to avoid obstacleBjn 3

based on the recent sensor data.

Using the robot center point as the common point of refel -
ence, each range value can be transformed to a point in thi X
dimensional space. These 3D points can be integrated ir . 4
the VRS in two ways: direct and memory based integratior : ' | 3
For both forms of integration, the two dimensional horizdnt ; |
plane is subdivided into polar segments with a robot cedtere | |
origin. We are using an angular resolution of one degree. = ; i
3D point is integrated into the VRS by projection onto the | _ E
polar plane. The range value for each polar segmentis tl | . __
minimum distance from the origin to the points that were

projected into this segment. The direct integration is useflg. 2. Takes of the VRS data in the same scene. Left: VRS hgctir

: ; integration taking only the most recent input of two horidly mounted
with horizontally mounted range sensors. laser scanners as input. Right: VRS of the same scene afegration of

Memory based integration keeps the 3D points in memoryse local obstacle map (black), resulting from memory bastsgration of
This is required since obstacles may disappear from sengwn horizontally mounted range sensors and prior robotandki the scene.

view; for example, in the sensor configuration used here,
static 3D objects will disappear from sight of the tilted
scanners, as the robot moves along. To achieve the memding ray tracing procedure, a maximum distance of obstacles
effect, the 3D points are projected onto a grid map witlthat are integrated into the VRS is defined (magenta circle).
respect to the current robot pose obtained by Monte Carlbthe distance obtained by the ray tracing procedure for a
Localization. This transforms the generation of the VR®$olar segment is shorter than the minimum distance of all
from a local to a global coordinate problem. The localizatio direct integrated points, the polar segment’s range vaue i
uncertainty has to be taken into account in the process, a8t to ray tracing distance.
discussed later. Fig. 2 (left) shows the VRS data using two direct in-
Fig. 1 shows how the grid map is integrated into theegrated horizontally mounted laser scanners with78°
generation of the VRS. There are two laser scanners (réi@ld of view as input (cf. Fig. 1 red and grey). Since this
and grey beams) that are directly integrated into the VRY.RS reflects the environmental boundaries, it is suitabte fo
Additionally, the polar segments (blue) are shown. Thenobile robot localization. The right part shows the VRS iafte
obstacle grid map is combined with the direct integratethtegration of the obstacle map generated by non horizgntal
points through a ray tracing in the grid map based on th@ounted laser scanners. Since this VRS is aware of table tops
current robot pose (magenta beams). In order to accelerated seat bases, it is suitable for 3D obstacle avoidance.




A. Filtering the Data

Due to sensor and localization noise mentioned abov. i
filters have to be used when integrating the 3D points into tk\
obstacle grid map. Wrongly inserted points would cause tr\
robot to hallucinate obstacles. In consequence, the failgpw

filters are used:

1) 3D points are omitted from integration into the obstacl
grid map, if there are any directly integrated points
closer to the robot for the respective polar segment.

2) 3D points higher than the robot's maximal height are
omitted.

3) 3D points are omitted, if their distance to the robot is
above a defined threshold.

The first filter is safe since there is no use for keeping
in memory an obstacle that is already visible in the dired
integrated sensors. The second filter make sense, since
jects above robot height cannot cause harm. The third filt€
reduces the influence of any localization orientation earat
is safe because of the obstacle’s distance.

Among the issue of wrongly inserted 3D points, thd
handling of dynamic objects in the robot’s environment i
a crucial part of the VRS. For example, a human walkin
around the robot would cause obstacles to be detect
incorrectly all around the robot; the experiment that tésés
different filters in the following section, shows the effect
These points cannot be filtered out by simple geometrg
filters. The problem can only be solved by discriminatin

between static and dynamic obstacles in the robot’s sudroun
Fig. 3. Left: Schematic top view showing the laser scannafigoration.

|ngs Dynam|c ObJeCtS are detected by observmg SUdd%‘Eht Simulated LiSA robot with rendered laser scannemnixearhe SICK
changes in the directly integrated range sensors. The dgnaraser scanners (blue beams) form a horizontal plane, theuytokaser

objects are tracked by a Kalman filter based motion trackeicanner planes (green beams) a funnel around the robot.
Each moving object has an uncertainty ellipse representing
the probability that a dynamic object is at this position.
In order to omit all 3D points caused by dynamic objects
from integration into the obstacle grid map, the points are In this section we test the VRS concept with different
projected onto the polar plane. If the projected points li@D and 3D sensor configurations. One plattform we used
within a dynamic object’s uncertainty ellipse, the point igs the LiSA robot (Fig.5, left). It is equipped with six laser
omitted. In our implementation, we have used the motioscanners. Two SICK s300 scanners are mounted horizontally
tracker provided in the “cure” framework [8]. The motionon opposite corners of the robot. Since both scanners have
tracker also successfully takes the ego motion of the robatfield of view of270°, their combination provides &60°
into account and compensates it. The motion filter togethéeld of view in a horizontal plane (see Fig. 3 blue rays).
with the other three filters achieve that only 3D pointsSince two dimensional sensor information is insufficient fo
caused by static obstacles that are not visible in the djrectcollision free navigation in 3D, the sensor configuration is
integrated sensors, like table tops or shelves, are irtttyra extended by four Hokuyo laser scanners. They are mounted
in the grid map. just above base plane height and pointing upward at an angle
Additionally to all filters, an aging process is applied ornso that all four laser scanners form a funnel around the robot
the grid map to ensure that wrongly inserted obstacles do nee Fig. 3, green rays).
block the robot forever. This aging process only contindies i
the robot moves; otherwise the robot could “forget” obstacl A+ Testing the point filters
during a longer stop, like a manipulation task near a table. The results of the 3D point filters for the local obstacle
During the manipulation, the table edge is not visible in thenap are shown in Fig. 4. The red dots are the 3D points that
sensor data. After the manipulation phase, the robot woultte classified as obstacles and integrated into the obstacle
collide with the table edge because the VRS and thus tmeap while the LiSA robot does 860° turn and a human
obstacle avoidance algorithm would be unaware of it. Imalks around the robot. In the left figure, all 3D points
our implementation the threshold is 25 seconds of robare integrated into the obstacle grid map. This leads to
movement before it forgets an obstacle. various incorrect inserted points and the robot is effetjiv

IV. EXPERIMENTS



Fig. 4. 3D points integrated in the obstacle grid subjech®used filters. Left: No filter is applied on the 3D points. ©@bsly, the localization suffers
from an orientation error here. Middle: Filters 1 and 2 arpliad on the 3D points. Right: 3D points belonging to dynamijects are deleted.

blocked. The middle figure shows the remaining 3D point
after filters 1 and 2 are applied. It is obvious that man
previously inserted points are removed. However the rob:
is still blocked due to the 3D points caused by the huma
walking around the robot. Fig. 4(right) shows the result o
the additionally applied dynamic object filter that uses th
kalman motion tracker. In fact, all removed points were
caused by the human walking by.

B. Testing the VRS for enabling 3D obstacle avoidance

The ability of the VRS to enable 3D obstacle avoidance i
tested using the LiSA robot's 3D sensor configuration and
3D camera based sensor configuration in combination witn
the two dimensional obstacle avoidance algorithms Vectt
Field Histogram (VFH [1]) and the Nearness Diagram (NLC
[6]) provided by the player framework [11]. Fig. 5 (left)
shows a scene of the robot run. The crucial part of th
parcours for all obstacle avoidance algorithms based on Z
data is the configuration of two chairs standing back-tc
back. The distance between the chair legs appears to of
enough space for the LiSA robot to pass through, so the pz
through the chairs is identified as navigable by 2D sens:
configurations. Fig. 5 (right) shows this experiment. The NIL
algorithm is used with a VRS, supplied solely with the 2C
SICK scanner data. As expected, the VRS only contains ti
chair legs and no seat bases. The ND method identifies t...
area as navigable, and the robot physically collides with thFig. 7. Left: Unfiltered point cloud obtained during3@0° turn in an office

chairs. environment. Right: Filtered point cloud. Sensor erromsfrreflection and
In the second experiment, the VRS uses the data frorange steps are removed.

all six laser scanners as input. Fig. 6 shows the VRS and
the robot path through the parcours resulting from the ND
obstacle avoidance generated motion commands. The $arameters, each pixel represents a point in 3D space. Since
information allows the chairs to be detected in the VRS. Ththe PMD camera does not provide RGB-color information,
ND algorithm identifies the chair region as not navigable and normal camera is used together with it to assign a color
steers the robot round the chairs. value to each 3D point. Using colored points offers more
robust sensor error filtering. Fig. 7 shows colored 3D points
obtained by the sensor during #0° turn in an office
This section demonstrates that other range sensors camvironment. Apparently, the sensor is able to map the 3D
be integrated seamlessly into the obstacle avoidance ggocstructure of the office environment. However, there are many
with the VRS concept. In addition to the previously desatibe sensor errors due to reflection on windows or so called flying
sensor configuration, a time-of-flight PMD camera is usegdixels at range steps, which arise from integration errors i
[5]. This sensor uses an array of laser diodes to assignttee sensor(left). These sensor errors have to be filtered out
range value to each pixel. Using the camera pose and imtringiefore the PMD data is integrated into the VRS. We have

C. Integrating a 3D Camera into the Virtual Range Scan



Fig. 5. Left: Experimental setup that requires 3D environhwvareness to identify the region below the chair seatotisavigable. Middle and Right:
The VRS using only the two SICK laser scanner is not aware efdfmair seats. The ND obstacle avoidance algorithm identifie chair region as
navigable and the robot collides with the chairs.
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Fig. 6. The VRS integrates the information of all six lasearsters. Accordingly, the obstacle grid map contains thér clemts. The VRS marks the
chair region as blocked and the ND algorithm navigates thetraround the chairs.
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used the filtering method described by Huhle et al. [4]. Imaterial about additional experiments is availablevad.

is a clustering algorithm in the spatial and color space thanf or nati k. uos. de/ kbs/ | i sa_downl oads. ht m

detects isolated points. Fig. 7 (right) shows the PMD camera

data with isolated points removed. The filter removes neary. Integrating Restricted Zones into the Virtual Range Scan

all sensor errors; note that it also removes a number of trueThe VRS makes it easy to integrate restricted zones for the
positive data points. Since the only precondition of the VRSt A restricted zone can be for example the area around
is, that an integrated sensor is able to map its sensor d&aircase heading down or other obstacles that can not be
onto 3D points, this sensor can be seamlessly integratedytey identified in the sensor data. The standard way t@solv
Fig 8 presents the results of an experiment using a VR§js problem is to use a high level path planner that takes the
combining a SICK laser scanner and the PMD camera.  regtricted zones into account in the global path. Using the

The sensors are mounted on a smaller robot to clarify th§/RS, there is an alternative. The restricted zone is diyectl
the VRS concept is not restricted to the LiSA robot's sensqhptegrated into the obstacle grid map. In consequence, the
configuration. The left figure shows the experimental setupestricted zone is integrated together with the sensoridata
The robot has to drive around two wastebins, which are ngfe VRS. Hence the restricted zones look like real obstacles
visible in the laser scanner data. The middle figure showsr a classical two dimensional obstacle avoidance algarit
that the VRS (blue) is aware of the obstacles due to thgig. 9 presents the result of an experiment with a robot using
PMD camera’s sensor data (red points) and the ND obstagle/RS with a forward directed SICK scanner and a backward
avoidance navigates the robot around the wastebins (rightdirected Hokuyo scanner as input (top). The bottom figure

Space does not permit to present more experiments. ThBows, that the VRS is aware of the restricted zones and the
VRS has proven to perform robustly as expected. Some videobot navigates around them.



Fig. 8.
around the wastebins.

(1]

(2]

(3]

(5]
(6]

Fig. 9. Top: Mobile robot equipped with forward directed &l@nd 71

backward directed Hokuyo scanner. Bottom: The VRS (bluajiare of the
restricted zones (magenta) and the robot navigates rowmd {red path).

(8]

El

V. CONCLUSION AND FUTURE WORK [10]

[11]
This paper has presented the VRS concept. It combines
range sensors in arbitrary configurations with classical tw
dimensional obstacle avoidance tools. Using two differert#l
3D range sensor configurations as demonstrating examples,
the VRS enables the robot to navigate in cluttered, dynamic
environments. Future work will involve additional ranging(13]
sensors, like stereo cameras, sonars, and tilting / rgtatin
laser scanners.

Left: Experimental setup Middle: The VRS (blue) isaae of the obstacles due to the PMD camera (red points). Rigté robot navigates
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